

Understanding Carbon Intensity of Renewable Fuels

September 16, 2022 Ashley Player, PE Partner, Energy Compliance Services At Weaver, there are no "one-size-fits-all" solutions. We combine leading technical knowledge with specific industry experience to provide highly customized services tailored to each client's needs.

Industrie

Renewable energy

- Oil and gas
- Oilfield services
- Real estate
- Technology
- Manufacturing and distribution
- Professional services
- Financial services
- Financial institutions
- Private equity
- Insurance
- Healthcare
- Construction
- Hospitality
- Government
- Not-for-profit
- ► Higher education

Services

Advisory Services

- ► Energy Compliance Services
- Client advisory services
- Risk advisory services
- ► IT advisory services
- Transaction advisory services
- Forensic and litigation services

Assurance Services

- Audit, review and compilation
- Agreed-upon procedures
- Employee benefit plan audit
- SOC reporting
- Attestation services
- IFRS assessment and conversion

Tax Services

- Federal tax
- State and local tax
- International tax
- Private client services

Top 35 Firm nationwide

Best of the Best Firms (2021)

Inside Public Accounting

A Worldwide Alliance of Independent Accounting Firms

RFS D Code Categories

Cellulosic Biofuel:

- D codes **3**, **7**
- At least 60% reduction

Biomass-Based Diesel:

- D codes **4**, **7**
- At least 50% reduction

Advanced Biofuel:

- D code **5 (or 3, 4, 7)**
- At least 50% reduction

Lifecycle Greenhouse Gas (GHG) Emissions

GHG emissions must take into account direct and significant indirect emissions, including land use change.

^{*} compared to a 2005 petroleum baseline

Total Renewable Fuel:

- D code 6
- At least **20**% GHG reduction; except:
- Existing (2007) facilities are "grandfathered", i.e., exempt to its 2007 baseline

RFS Biogas Basics

- Anaerobic Digestion of Organic Matter (D3)
 - Landfills
 - Municipal Wastewater
 Treatment Plants
 - Agricultural Digesters
 - Separated MSW Digesters
- Other Digestion (D5)
 - Other Renewable Biomass
 Waste Digesters

- Renewable Fuel RIN Generation
 - CNG Sold/Used as Transportation Fuel
 - LNG Sold/Used as Transportation Fuel

RFS Biogas RIN Generation

- RIN Generation Calculations
 - Volume and Heat Content Injected
 - Quantity Withdrawn CNG/LNG
 - Contracted RNG
 - Limited to Lowest MMBTU
 - [MMBTU] x 1,000,000 x 0.903 / 77,000 = [MMBTU] x 11.7273 = RINs

Carbon Intensity (CI)

- CA-GREET 3.0 Model
 - Feedstock
 - Production Process
 - Fuel
- Simplified Tier 1 Calculators
 - Landfills
 - Wastewater Sludge
 - Organic Waste
 - Dairy and Swine Manure

LCFS Fuel Pathway CI

Carbon Intensity Values of Certified Pathways

Biogas Pathways (CNG)

- Landfill Gas (40)
- WWTP (30)
- Organics (-10)
- Manure Digester (-300)

Hydrogen

- Grid Electricity (160)
- Zero Cl Electricity (10)
- Landfill Gas (105)
- WWTP (130)
- Manure Digester (-240)

https://www.arb.ca.gov/fuels/lcfs/fuelpathways/pathwaytable.htm

LCFS Credit Calculation

$$Credits_{i}^{XD}/Deficits_{i}^{XD}(MT) = \left(CI_{standard}^{XD} - CI_{reported}^{XD}\right) \times E_{displaced}^{XD} \times C$$

$$CI_{reported}^{XD} = \frac{CI_i}{EER^{XD}}$$

 CI_i

Is the carbon intensity of the fuel

 EER^{XD}

Is the Energy Economy Ratio

$$E_{displaced}^{XD} = E_i \times EER^{XD}$$

 E_i

Is the energy of the fuel, in MJ

 EER^{XD}

Is the Energy Economy Ratio

CI Validation and Verification

Validation

- Fuel Pathway Applications
 - 3+ Months of Data

Verification

- Annual Fuel Pathway Reports
 - 24 Months of Data
- Quarterly Fuel Transactions Reports
 - 12 Months of Transactional Data

Simplified Tier 1 Calculator

Summary of the Tier 1 Landfill Biomethane Pathway Release Date: August 13, 2018

Pathway Descriptions and Results								
Finished Fuels	Carbon Intensity from Inputs (gCO₂e/MJ)	Conservative Margin of Safety (gCO2e/MJ)	Total Carbon Intensity (gCO2e/MJ)					
Compressed Natural Gas (CNG)	0.00	0.00	0.00					
Fuel Producer: . landfill gas to pipeline-quality biomethane; delivered via pipeline; compressed to CNG in California.								
Liquefied Natural Gas (LNG)	0.00	0.00	0.00					
Fuel Producer: . landfill gas to pipeline-quality biomethane; delivered via pipeline; liquefied to LNG at; transported by trucks to California.								
Liquefied CNG (or L-CNG)	0.00	0.00	0.00					
Fuel Producer: . landfill gas to pipeline-quality biomethane; delivered via	pipeline; liquefied to L	NG at ; re-gassified in Califo	rnia.					

- Operational CI < Certified CI
 - May keep Certified CI or request to Update CI
- Operational CI > Certified CI
 - Out of Compliance
 - Subject to Investigation and Enforcement
 - Credits Adjusted Retroactively

Verification Requirements

- Accreditation through CARB
- Verifiers
 - 2+ years Relevant Experience
 - Qualification Examples: QAP, Attestations
- Lead Verifiers
 - Process Engineering & Alternative Fuel Production Technology
 - Independent Reviewer
- Annual Review
- Site Visits
 - Production Facility
 - Records Location

RFS Update: Renewable Electricity Pathways

- Options being considered:
 - » Vehicle Manufacturers
 - » Charging Station Owners
 - » Both with Geofencing and Charging Station Priority

- RIN Generation
 - » Equivalence Value
 - 22.6 kWh = 1 gallon = 1 RIN
 - 1 MWh = \sim 44.25 RINs
 - Could change in proposed rule
 - » Must match renewable electricity to electricity used for transportation fuel only

Questions?

Ashley Player, PE

ashley.player@weaver.com 619.929.3997

September 16, 2022

Brad Pleima, P.E.

President

bpleima@ecoengineers.us

515-490-8949 (cell)

Our Approach Makes the Clean Energy Economy Possible

More than 450 hours of EcoUniversity workshops performed

More than 100 regulatory engagement projects completed since 2010

3.6B
Q-RINs verified
cumulatively
by our Audit
Team through 2020

Expert life-cycle carbon analysis of more than 300 clean energy projects

Manage compliance of more than gallons of biofuel capacity

Supported asset development of more than \$2B in clean energy projects

Our 360° project approach has evolved through hard-earned experience and unites our talented team with our core strengths — training and education, regulatory engagement, life-cycle analysis, asset optimization, compliance management, and audit — to deliver the results you seek and the return you count on.

We Combine our Core Services with Areas of Expertise

Low-Carbon Fuels

- RNG
- Ethanol
- Biodiesel
- Renewable Diesel
- Woody Biomass
- Renewable Electricity
- Hydrogen
- Renewable Jet
- Thermal energy

Clean Energy Regulations

- USA (RFS, LCFS, CFP)
- Canada (RLCFR and provincial regulations
- Brazil (RenovaBio)
- Voluntary markets –
 (utilities, higher
 education,
 municipalities)
- ISCC

Technologies

- Anaerobic digestion
- Fermentation/Pyrolysis
- Transesterification
- Carbon capture, utilization, and sequestration
- Coprocessing
- Gasification

What is Life-Cycle Analysis?

Life-cycle Analysis (LCA) is a technique to assess the environmental aspects and potential impacts associated with a product, process, or service, by:

- Compiling an inventory of relevant energy and material inputs and environmental releases
- Evaluating the potential environmental impacts associated with identified inputs and releases
- Interpreting the results to help you make a more informed decision

LCA Drivers

Why track environmental impact with LCA?

- Carbon policies and regulations
- ESG reporting directives
- Calculate emissions reduction
- Comparison to other alternatives
- Gain competitive advantage
- Corporate image
- Set/adjust internal cost of carbon

LCA Tools

- GREET Fuel pathways
 - California LCFS CA-GREET 3.0
 - Oregon CFP OR-GREET
 - USEPA RFS
 - Voluntary markets
 - Open source
- **GHGenius** Fuel pathways
 - British Columbia LCFS
- SimaPro
 - Licenses for many different industries
 - Often used for product-based CI analysis
- Open LCA
 - Canada Clean Fuel Standard
- Others typically focused on a specific product/industry segment

Example Fuel Carbon Intensity Calculation

Key CI Inputs

No. 1 is process energy consumption

- Utility source natural gas, coal, electric
- On-site power, CHP

Fuel yield

- Driven by process technology efficiency
- Feedstock conversion efficiency, type of feedstock

Co-products

- Displacement credits DDG for cattle feed
- Co-product processing efficiency

Transportation

- Mode of transportation truck, rail, ship
- Feedstock, fuel

Chemicals, other factors

Biogas CI Example at Municipal WWTP

Parameter	CI contribution (g/MJ)
NG	0.43
Electricity	14.60
Feed loss*	5.03
Pipeline transport	11.41
Compression of CNG*	3.18
Tailpipe of CNG vehicles*	3.66
Total	38.32

^{*}Set Values

Dairy RNG to Renewable Fuel Example for CA LCFS

- Type of manure matters
 - Dairy and swine manures only get methane avoidance credit
 - Beef cattle excluded
- What is the baseline manure management practice?
 - Lagoon scores are best
 - No lagoons = no methane avoidance credit
- How much of the manure goes to lagoons?
 - Can have 40- to 75-point CI impact
- How often are lagoons cleaned out? Agitated?
 - Can have 50- to 100-point CI impact
- How much RNG will be produced?
 - Set amount of methane avoidance credit

Available Tier 1 Simplified Calculators

Biomethane from North American Landfills

Biomethane from Anaerobic Digestion of Wastewater Sludge

Biomethane from Organic Waste

Biomethane from Dairy and Swine Manure

https://ww3.arb.ca.gov/fuels/lcfs/ca-greet/ca-greet.htm

CI Analysis Result Variables in Manure Projects

Stage of Life Cycle	S1	S2	S3	S4	S 5	Note
Manure Handling	0	0	0	0	0	User control
Grid electricity for upgrading	25	25	25	25	25	User control
Utility source NG for biogas production and upgrading*	14	14	14	14	18	User control
Biomethane flaring	2	2	2	2	2	User control
Fugitive	10	10	10	10	10	Almost fixed
Transmission	13	13	13	13	13	Proportional to distance, almost fixed
Compression	3	3	3	3	3	Fixed
Tailpipe	61	61	61	61	61	Fixed
Avoided emissions credits	-244	-316	-253	-280	-290	Dependent on baseline vs. project volume
Total	-116	-187	-125	-152	-162	

Key inputs and variables:

- 1. Dairy farm manure management practices (baseline)
- 2. RNG production
- 3. Utility inputs
- 4. Transmission (distance to CA)
- Most other variables are fixed in CA LCFS Simplified GREET models

(All CI values are in the unit of g CO₂e/MJ, numbers are rounded)

- * Assuming it does not change when biogas yield changes
- **Other cases when this value is between 40-100% were analyzed and reported separately

Example Voluntary Market Buyers

- Is CI important? Volume-based or CI-based?
- Potential voluntary market buyers
 - Utilities
 - Green Tariff
 - Upcoming regulations
 - Corporate Goals
 - **\$**\$\$\$
 - Universities
 - Fortune 500 companies
 - Other renewable fuel production facilities
 - Municipalities

Brad Pleima, P.E.

President

bpleima@ecoengineers.us

515-490-8949 (cell)

